346 research outputs found

    Guaranteed robustness properties of multivariable, nonlinear, stochastic optimal regulators

    Get PDF
    The robustness of optimal regulators for nonlinear, deterministic and stochastic, multi-input dynamical systems is studied under the assumption that all state variables can be measured. It is shown that, under mild assumptions, such nonlinear regulators have a guaranteed infinite gain margin; moreover, they have a guaranteed 50 percent gain reduction margin and a 60 degree phase margin, in each feedback channel, provided that the system is linear in the control and the penalty to the control is quadratic, thus extending the well-known properties of LQ regulators to nonlinear optimal designs. These results are also valid for infinite horizon, average cost, stochastic optimal control problems

    Differentially Private Distributed Optimization

    Full text link
    In distributed optimization and iterative consensus literature, a standard problem is for NN agents to minimize a function ff over a subset of Euclidean space, where the cost function is expressed as a sum ∑fi\sum f_i. In this paper, we study the private distributed optimization (PDOP) problem with the additional requirement that the cost function of the individual agents should remain differentially private. The adversary attempts to infer information about the private cost functions from the messages that the agents exchange. Achieving differential privacy requires that any change of an individual's cost function only results in unsubstantial changes in the statistics of the messages. We propose a class of iterative algorithms for solving PDOP, which achieves differential privacy and convergence to the optimal value. Our analysis reveals the dependence of the achieved accuracy and the privacy levels on the the parameters of the algorithm. We observe that to achieve ϵ\epsilon-differential privacy the accuracy of the algorithm has the order of O(1ϵ2)O(\frac{1}{\epsilon^2})

    On queue-size scaling for input-queued switches

    Get PDF

    Qualitative properties of α\alpha-fair policies in bandwidth-sharing networks

    Full text link
    We consider a flow-level model of a network operating under an α\alpha-fair bandwidth sharing policy (with α>0\alpha>0) proposed by Roberts and Massouli\'{e} [Telecomunication Systems 15 (2000) 185-201]. This is a probabilistic model that captures the long-term aspects of bandwidth sharing between users or flows in a communication network. We study the transient properties as well as the steady-state distribution of the model. In particular, for α≥1\alpha\geq1, we obtain bounds on the maximum number of flows in the network over a given time horizon, by means of a maximal inequality derived from the standard Lyapunov drift condition. As a corollary, we establish the full state space collapse property for all α≥1\alpha\geq1. For the steady-state distribution, we obtain explicit exponential tail bounds on the number of flows, for any α>0\alpha>0, by relying on a norm-like Lyapunov function. As a corollary, we establish the validity of the diffusion approximation developed by Kang et al. [Ann. Appl. Probab. 19 (2009) 1719-1780], in steady state, for the case where α=1\alpha=1 and under a local traffic condition.Comment: Published in at http://dx.doi.org/10.1214/12-AAP915 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimization of Multiclass Queueing Networks: Polyhedral and Nonlinear Characterizations of Achievable Performance

    Get PDF
    We consider open and closed multiclass queueing networks with Poisson arrivals (in open networks), exponentially distributed class dependent service times, and with class dependent deterministic or probabilistic routing. For open networks, the performance objective is to minimize, over all sequencing and routing policies, a weighted sum of the expected response times of different classes. Using a powerful technique involving quadratic or higher order potential functions, we propose variants of a method to derive polyhedral and nonlinear spaces which contain the entire set of achievable response times under stable and preemptive scheduling policies. By optimizing over these spaces, we obtain lower bounds on achievable performance. In particular, we obtain a sequence of progressively more complicated nonlinear approximations (relaxations) which are progressively closer to the exact achievable space. In the special case of single station networks (multiclass queues and Klimov's model) and homogenous multiclass networks, our characterization gives exactly the achievable region. Consequently, the proposed method can be viewed as the natural extension of conservation laws to multiclass queueing networks. For closed networks, the performance objective is to maximize throughput. We similarly find polyhedral and nonlinear spaces that include the performance space and by maximizing over these spaces we obtain an upper bound on the optimal throughput. We check the tightness of our bounds by simulating heuristic scheduling policies for simple open networks and we find that the first order approximation of our method is at least as good as simulation-based existing methods. In terms of computational complexity and in contrast to simulation-based existing methods, the calculation of our first order bounds consists of solving a linear programming problem with both the number of variables and constraints being polynomial (quadratic) in the number of classes in the network. The i-th order approximation involves solving a convex programming problem in dimension O(Ri+l), where R is the number of classes in the network, which can be solved efficiently using techniques from semi-definite programming

    Two semi-Lagrangian fast methods for Hamilton-Jacobi-Bellman equations

    Full text link
    In this paper we apply the Fast Iterative Method (FIM) for solving general Hamilton-Jacobi-Bellman (HJB) equations and we compare the results with an accelerated version of the Fast Sweeping Method (FSM). We find that FIM can be indeed used to solve HJB equations with no relevant modifications with respect to the original algorithm proposed for the eikonal equation, and that it overcomes FSM in many cases. Observing the evolution of the active list of nodes for FIM, we recover another numerical validation of the arguments recently discussed in [Cacace et al., SISC 36 (2014), A570-A587] about the impossibility of creating local single-pass methods for HJB equations

    Convergence and asymptotic agreement in distributed decision problems

    Full text link

    A Dynamic Programming Approach to Adaptive Fractionation

    Get PDF
    We conduct a theoretical study of various solution methods for the adaptive fractionation problem. The two messages of this paper are: (i) dynamic programming (DP) is a useful framework for adaptive radiation therapy, particularly adaptive fractionation, because it allows us to assess how close to optimal different methods are, and (ii) heuristic methods proposed in this paper are near-optimal, and therefore, can be used to evaluate the best possible benefit of using an adaptive fraction size. The essence of adaptive fractionation is to increase the fraction size when the tumor and organ-at-risk (OAR) are far apart (a "favorable" anatomy) and to decrease the fraction size when they are close together. Given that a fixed prescribed dose must be delivered to the tumor over the course of the treatment, such an approach results in a lower cumulative dose to the OAR when compared to that resulting from standard fractionation. We first establish a benchmark by using the DP algorithm to solve the problem exactly. In this case, we characterize the structure of an optimal policy, which provides guidance for our choice of heuristics. We develop two intuitive, numerically near-optimal heuristic policies, which could be used for more complex, high-dimensional problems. Furthermore, one of the heuristics requires only a statistic of the motion probability distribution, making it a reasonable method for use in a realistic setting. Numerically, we find that the amount of decrease in dose to the OAR can vary significantly (5 - 85%) depending on the amount of motion in the anatomy, the number of fractions, and the range of fraction sizes allowed. In general, the decrease in dose to the OAR is more pronounced when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting), and (iii) we allow large daily fraction size deviations.Comment: 17 pages, 4 figures, 1 tabl

    Evolutionary game of coalition building under external pressure

    Get PDF
    We study the fragmentation-coagulation (or merging and splitting) evolutionary control model as introduced recently by one of the authors, where NN small players can form coalitions to resist to the pressure exerted by the principal. It is a Markov chain in continuous time and the players have a common reward to optimize. We study the behavior as NN grows and show that the problem converges to a (one player) deterministic optimization problem in continuous time, in the infinite dimensional state space

    Pseudorehearsal in value function approximation

    Full text link
    Catastrophic forgetting is of special importance in reinforcement learning, as the data distribution is generally non-stationary over time. We study and compare several pseudorehearsal approaches for Q-learning with function approximation in a pole balancing task. We have found that pseudorehearsal seems to assist learning even in such very simple problems, given proper initialization of the rehearsal parameters
    • …
    corecore